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We have studied the validity of the spin-polaron picture in the frustrated J1-J2 Heisenberg model. For this
purpose, we have computed the hole spectral functions for the Néel, collinear, and disordered phases of this
model by means of the self-consistent Born approximation and Lanczos exact diagonalization on finite-size
clusters. We have found that the spin-polaron quasiparticle excitation is always well defined for the magneti-
cally ordered Néel and collinear phases, even in the vicinity of the magnetic quantum critical points, where the
local magnetization vanishes. As a general feature, the effect of frustration is to increase the amplitude of the
multimagnon states that build up the spin-polaron wave function, leading to the reduction of the quasiparticle
coherence. Based on Lanczos results, we discuss the validity of the spin-polaron picture in the disordered
phase.
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I. INTRODUCTION

The antiferromagnetic �AF� J1-J2 Heisenberg Hamiltonian
with competing interactions to first and second neighbors on
the square lattice represents a prototypical model for the
study of quantum phase transitions in low dimensional
spin-1 /2 Heisenberg antiferromagnets. The zero point quan-
tum fluctuations, inherent to the AF Heisenberg model, can
be enhanced by magnetic frustration, leading to an interest-
ing ground state phase diagram which, after many years of
investigations, has been quite well established,1–5 and it is
depicted in Fig. 1. As the frustration J2 /J1 increases, the
local magnetization of the Néel state is reduced, persisting
until the quantum critical point at about J2 /J1�0.4.5

On the other hand, for J2 larger than J1, the quantum
collinear state—neighboring spins aligned ferromagnetically
along the x direction and antiferromagnetically along the y
direction, or vice versa—is stabilized by an order from dis-
order phenomenon.6,7 On this side of the diagram, a decrease
of J2 /J1 implies an increase of frustration, and the zero point
quantum fluctuations reduce the local magnetization of the
collinear state which vanishes at the quantum critical point
J2 /J1�0.6. In the intermediate region 0.4�J2 /J1�0.6,
quantum fluctuations are strong enough to destroy the mag-
netization, and the nature of the ground state is still under
debate,8 although the most sophisticated numerical method
indicates that the plaquette resonance valence bound �RVB�
would be the possible ground state.5 While the experimental
realization of the quantum Néel order is widely found in
many transition metal oxides, it was only recently that the
quasi-two-dimensional �quasi-2D� vanadium oxide
Li2VOSiO4 was found as the first experimental realization of
the J1-J2 model, being located at the collinear side of the
phase diagram.9

A little explored issue in the literature10 is the dynamics of
holes injected in the magnetic ground states of the J1-J2
model. Since the hole strongly couples with the magnetic
excitations, dictated by the different symmetries of the mag-

netic ground states, a strong dependence of the one-particle
properties with frustration is expected. Hence, it is interest-
ing to investigate whether the conventional quasiparticle
excitations,11 the spin-polaron picture, is valid or not in mag-
netically frustrated states.

In the present paper, we present a systematic study of the
dependence of the one-hole spectral functions with frustra-
tion for the whole range of parameters. Using the self-
consistent Born approximation �SCBA� and exact diagonal-
ization, our main objective is to investigate the validity of the
spin-polaron picture when the quantum critical points are
approached from the Néel and the collinear sides of the
phase diagram. In previous investigations, we have already
studied the hole motion in the triangular12 and canted13 anti-
ferromagnets. We have shown that the noncollinearity of the
magnetic ground states, a 120° and tilted 180° Néel order,
respectively, leads to two different mechanisms for hole
motion—one magnon assisted and other free-like—which in-
terfere in a nontrivial way, giving rise to the vanishing of the
quasiparticle weight in some regions of the Brillouin zone
�BZ�.12,13 In the present study, we have found that the spin-
polaron picture, which seems to be the correct description for
the unfrustrated Néel case, remains valid for the frustrated
Néel and collinear phases, even in the vicinity of the mag-
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FIG. 1. Schematic magnetic phase diagram of the J1-J2 model.
The solid lines indicate the values of the local magnetizations.
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netic critical points. As a general feature, the effect of frus-
tration is to increase the contribution of multimagnon states
in the spin-polaron wave function, leading to the reduction of
the quasiparticle �QP� weight, which always remains finite.
For the Néel case, the quasiparticle dispersion has always the
same structure, with a ground state momentum at k
= �� /2,� /2�, even when the number of magnons increases
as the disordered phase is reached. On the other hand, for the
collinear phase, the structure of QP dispersion changes nota-
bly with frustration due to the interplay between the magnon
assisted and free-like mechanisms for hole motion, leading to
the divergence of the QP effective mass for some momenta.
In the disordered regime, we have performed an exact diago-
nalization study on finite-size clusters. Guided by the SCBA,
the exact spectra can be interpreted as the result of the cou-
pling of the hole with a superposition of Néel and collinear
short range correlations. However, it is difficult to extrapo-
late this result in the disordered phase since it is believed
that, in the thermodynamic limit, the nature of the low lying
magnetic excitations above the candidate ground state5 and
their eventual coupling with the hole could change dramati-
cally.

The paper is organized as follows. In Sec. II, we present
the self-consistent Born approximation, and we compare its
predictions with exact calculations on finite-size clusters. In
Sec. III, we analyze the hole spectral functions obtained for
the different ground states of the J1-J2 antiferromagnet. Fi-
nally, in Sec. IV, we state the conclusions and discuss the
validity of the spin-polaron picture in the general context of
frustrated antiferromagnets.

II. MODEL AND METHODS

We consider the t-J1-J2 model to describe the motion of a
hole in the frustrated J1-J2 antiferromagnet, which is written
as

H = − t �
�ij��

�c̃i�
† c̃j� + H.c.� + J1�

�ij�
Si · S j + J2�

�ik�
Si · Sk,

�1�

where �ij� and �ik� stand for the summation over first and
second neighbors on a N site square lattice, respectively. For
simplicity, we consider only hopping terms t to first neigh-
bors. The electronic operators are the projected ones, c̃i�
= �1−ni−��ci�, that obey the no double occupancy constraint.
To compute the hole spectral function of the t-J1-J2 model in
the thermodynamic limit, we appeal to the spinless fermion
representation and the self-consistent Born
approximation.14,15

A. Self-consistent Born approximation

Within the SCBA scheme, the hole is represented by a
spinless fermion hi, which carries the charge degree of free-
dom, while the magnetic excitations are treated in the spin-
wave approximation �SWA� by means of the Holstein-
Primakov bosons ai. Since the SWA is valid only for
magnetically ordered states, with magnons as their elemen-
tary excitations, we restrict the use of the SCBA to the Néel

and collinear phases of the J1-J2 antiferromagnet. Following
a standard procedure,12 we obtain the effective Hamiltonian
for the hole motion,

Hef f = �
k

�khk
†hk + �

q
�q�q

†�q + �
k,q

�Mkqhk
†hq�q−k

† + H.c.� ,

�2�

where hk is the Fourier transform of the spinless fermion
operator and �q are the Bogoliubov operators that diagonal-
ize the Heisenberg part in the SWA.

The effective Hamiltonian comprises three terms: �i� The
first is a free-like hopping term that takes into account the
possibility of the hole to move without disturbing the under-
lying magnetic background. It is characterized by the hole
dispersion

�k = �
�

t� cos
Q · �

2
cos k · � ,

where �� is the summation over neighbors � of a given site,
connected by the hopping term t� �first neighbors in our
case�. Q is the magnetic wave vector, �� ,�� for the Néel
phase, and �� ,0� or �0,�� for the collinear phase. It should
be noticed that a dispersive bare hole band will exist only for
magnetic backgrounds with some noncollinear or ferromag-
netic correlations between nearest neighbors, like in the col-
linear phases. Instead, in the Néel phase, �k=0, and this fact
will affect considerably the structure of the hole spectral
function. �ii� The second is a free magnon term, character-
ized by the dispersion in the SWA

�q = ���q − 	�2 − 
q
2 ,

where

�k =
1

2�
�

J� cos2 Q · �

2
cos k · �, 	 =

1

2�
�

J� cos Q · � ,

and


k =
1

2�
�

J� sin2 Q · �

2
cos k · � .

�iii� The third is a hole-magnon interaction term, which in-
corporates the magnon-assisted mechanism for the hole mo-
tion, characterized by the hole-magnon vertex interaction

Mkq =
i

�N
��qvk−q − �kuq−k� ,

where

�k = �
�

t� sin
Q · �

2
sin k · � ,

and the Bogoliubov coefficients are

uq =��q − 	 + �q

2�q
,

vq = sgn�
q���q − 	 − �q

2�q
.
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To study the hole dynamics, we compute the hole spectral
function, that is, Ak���=−�1 /��Im Gk

h���, where Gk
h���

= �AF�hk	1 / ��+ i�+−Hef f�
hk
†�AF� is the retarded hole Green

function, and �AF is the undoped magnetic ground state in
the SWA. In the SCBA, the hole self-energy is given by the
following self-consistent equation:

�k��� = �
q

�Mkq�2

� + i�+ − �q − �k−q − �k−q�� − �k−q�
.

This equation has been numerically solved for square lattices
with up to 3600 sites, with a linear mesh of 10 000 fre-
quences, and �+=0.01t. Once the hole self-energy is ob-
tained, the QP spectral weight can be calculated as zk= �	1
−��k��� /��
−1�Ek

, where the QP energy is given by the
equation Ek=�k+�k�Ek�.

B. Exact and self-consistent Born approximation comparison

We benchmark the accuracy of the analytical SCBA by
making a direct comparison of its predictions with Lanczos
calculations performed in finite-size clusters. In Fig. 2, we
show the Lanczos and SCBA hole spectral functions for a
4�4 lattice at the ground state momentum k= �� /2,� /2�.
The left panel corresponds to the unfrustrated case, while the
on right panel to the frustrated case, J2 /J1=0.4. It is well
known in the literature14,15 that the remarkable agreement
between SCBA and Lanczos results for the unfrustrated case,
in the strong coupling regime. This has been ascribed to the
vanishing of the first-order vertex corrections to the SCBA
hole self-energy.15 From Fig. 2, it is evident that the good
agreement remains valid in the frustrated case where, despite
the increase of zero point quantum fluctuations, the SCBA
reproduces the main features of the spectral function. We
have found that SCBA yields quantitatively good results for
all momenta in the BZ and in the strong coupling limit
�J1 / t�1�.

The collinear phases break the Heisenberg Hamiltonian
SU�2� spin-rotation symmetry, like in the Néel phase, and, in
addition, the invariance under � /2 real space rotation.7 This
discrete twofold degeneracy cannot be spontaneously broken

in Lanczos exact calculations on finite-size clusters, resulting
in the equal presence of �� ,0� and �0,�� correlations in the
magnetic background. On the other hand, in SCBA this dis-
crete degeneracy is broken from the onset, with the selection
of one of the two possible magnetic wave vectors, �� ,0� or
�0,��. Therefore, one should not naively compare Lanczos
and SCBA results, until the degeneracy is somehow broken
in Lanczos calculations, selecting one of the collinear orders.
To this end, we consider spatial anisotropy in the exchange
interactions to first neighbors, that is, different values of J1
along the x direction �J1x� and the y direction �J1y�. Clearly,
if J1x is larger than J1y, �� ,0� correlations will be favored. In
fact, from Table I, it shows that even a slight anisotropy,
J1y =0.99J1x, breaks the twofold degeneracy in the collinear
regime and considerably favors �� ,0� correlations.

Figure 3 displays the Lanczos and SCBA spectral func-
tions, for N=16 sites, in the collinear regime J2 /J1=0.7. In
the isotropic case and for k= �� ,0� �upper left panel�, there
is a strong disagreement between both curves; the exact
spectral function exhibits a two-peak structure, but the
SCBA function has only a pronounced peak at high energy.
This disagreement can be understood if we consider that, in
each method, the hole moves on a different magnetic back-
ground. While the Q= �� ,0� collinear phase has been chosen
from the onset in the SCBA, in the Lanczos calculations
�� ,0� and �0,�� correlations are present on equal footing
�see Table I�. With the introduction of a slight amount of
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FIG. 2. Hole spectral functions Ak��� for the Néel state, N=16, J1 / t=0.4, k= �� /2,� /2�, and two different values of the frustration,
J2 /J1=0.0 �left� and J2 /J1=0.4 �right�. The solid and dashed lines correspond to the Lanczos and SCBA results, respectively. The Lorentzian
broadening for Lanczos curves is �+=0.1t.

TABLE I. Exact structure factor Sq
z for the J1-J2 Heisenberg

model, with J2 /J1=0.7, N=16, and different values of the spatial
anisotropy in the exchange interactions to first neighbors, J1x�J1.

k J1y =J1x J1y =0.99J1x J1y =0.2J1x

�� ,0� 0.81590 1.24823 1.57717

�0,�� 0.81590 0.38094 0.18420

�� ,�� 0.12557 0.13307 0.15190

�� /2,� /2� 0.16624 0.16635 0.16667

�� ,� /2� 0.27813 0.35594 0.28422

�� /2,�� 0.27813 0.19768 0.16669
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anisotropy, J1y =0.99J1x, the agreement between both meth-
ods improves considerably �middle upper panel�. The small
anisotropy induces almost no changes in the SCBA because
its magnetic background remains the same. In Lanczos cal-
culations, instead, the anisotropy produces a noticeable
qualitative change since now the �� ,0� correlations are
largely favored over the �0,�� ones �see Table I�, resembling
the SCBA results. For larger anisotropy, J1y =0.8J1x �upper
right panel�, the agreement between exact and SCBA spectral
functions improves considerably because the exact magnetic
background is closer to the Q= �� ,0� state assumed in the
analytical calculations. On the other hand, for momenta
along the BZ diagonal, like �� /2,� /2� shown in the lower
panels of Fig. 3, the exact hole spectral functions do not
depend on the anisotropy, always showing a good agreement
with the SCBA spectra.

The performed comparison lends reliability to the SCBA
predictions for both frustrated phases, Néel and collinear. In
the next section, we present SCBA results for the hole dy-
namics in the thermodynamic limit.

III. RESULTS

A. Frustrated Néel case

In Fig. 4, we show the SCBA spectra for the unfrustrated
case, J2 /J1=0, along the momentum line �� /2,� /2�
→ �� ,�� and J1 / t=0.2. For this strong coupling regime, we
observe a strong k dependence of the spectra due to the
underlying magnetic Néel state. As a general feature, at low
energy there is a spin-polaron QP excitation and, several
resonances above it, the so called string excitations, whose

energies scale as Estring��J1 / t�2/3, for all momenta. This
structure of the spectra has been widely confirmed by several
numerical and analytical techniques.15–17 While the QP exci-
tation results from the coherent coupling of the hole motion
with the AF spin fluctuations, the higher energy string exci-
tations correspond to the hole motion inside a linear potential
generated by the overturned spins. The existence of a coher-
ent QP is assigned to the zero point quantum fluctuations that
repair pairs of misaligned spins at a characteristic time 1 /J1,
while the hole overturns spins at a characteristic time 1 / t.
Although this polaron picture is valid for the weak coupling
regime J t, the very existence of the spin-polaron excita-
tions in the strong coupling regime tJ gives support to the
idea that the coherence between hole motion and spin fluc-
tuations is partially preserved.

The effect of frustration is shown in Fig. 5 for J2 /J1
=0.3. We observe a spectral weight reduction of both the
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FIG. 3. Hole spectral function Ak��� for the collinear state, N=16, J1 / t=0.4, J2 /J1=0.7, and momenta �� ,0� �upper panels� and
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FIG. 4. Hole spectral function Ak��� for the unfrustrated
J2 /J1=0 Néel state and J1 / t=0.2 along the momentum line
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spin polaron and the string excitations, although the QP
weight of the spin polaron remains always finite for the
whole BZ, even for the extreme frustrated case �see below�.
Furthermore, there is a redistribution of the spectral weight
at low energies, which is related to the fact that the only
mechanism for hole motion is magnon assisted. At the mag-
netic level, frustration induces a reduction of the magnon
dispersion bandwidth, which can be associated with a re-
duced effective exchange Jef f. Therefore, the loss of QP co-
herence can be ascribed to an increase of the characteristic
time of the spin fluctuations 1 /Jef f. In addition, it is also
known that the spin stiffness is smaller for the frustrated
case, making the Néel order less rigid. Such a softening of
the magnetic correlations explains the weakening of the lin-
ear potential seen by the hole with the subsequent broaden-
ing of the string excitations. A similar effect of frustration on
the QP excitation has been observed by Shibata et al.10 al-
though their calculation, motivated by the description of the
photoemission spectra of Sr2CuO2Cl2, was performed on an
extended t-t�-t�-J model.

The other issue we are concerned with is the validity of
the spin-polaron picture near the magnetic quantum critical
point J2 /J1�0.4.18 In Fig. 6, we show the behavior of the
QP weight zk, as a function of frustration J2 /J1. It is ob-
served as a monotonic decrease of the QP weight, which
remains finite for all frustration and for the whole BZ. Since
near the critical point the local magnetization is m�0, the
use of the spin-wave theory for the calculation of the QP
weight can be questioned. In order to have reliable results
around the critical point, we have implemented the SCBA
with a modified spin-wave theory,19 which only incorporates
short range Néel correlations. In this approach, widely used
in magnetic systems disordered by quantum or thermal fluc-
tuations, a condition of zero magnetization is enforced by
means of a Lagrange multiplier, and as a consequence, the
magnon excitations become gapped. The resulting QP weight
is shown on the right of the vertical line of Fig. 6. In par-
ticular, we confirmed that the SCBA spectra for long and
short range correlations are practically the same which
means that hole dynamics only depends on the short range
magnetic correlations. To understand the behavior of the QP
weight with frustration, it is instructive to write down the
spin-polaron wave function as20

��k� = ak
�0�hk

†�AF� + �
q�

akq�
�1� hk−q�

† �q�
† �AF� + ¯ , �3�

where the first term represents a state with one hole and no
magnons, the second term one hole with one magnon, and so
on. The coefficients a�n� are the probability amplitude to have
n magnons in the spin-polaron state. As the effect of frustra-
tion is to reduce the magnon dispersion bandwidth, it is
easier for the hole to emit and absorb magnons. It is then
obvious that from the renormalization condition ��k ��k�
=1, the increasing contribution of multimagnon states will be
accompanied by the reduction of the QP weight ak

0 =zk
1/2. Al-

ternatively, we can extend the approximated expression for
the QP weight, derived by Kane et al.,11 to the frustrated
case,

zk � �1 +
t2m*zk

J1
�1 − 2J2/J1

−1

,

where m* is the spin-polaron effective mass, to make evident
the reduction of the QP weight with increasing frustration.

Figure 7 displays the spin-polaron dispersion for several
values of frustration. It can be seen that the reduction of the
QP bandwidth W is related to the reduction of the magnetic
bandwidth Wm=2�J2−J1� �see inset of Fig. 7�. This is due to
the fact that the only mechanism for hole motion in the Néel
state is the magnon-assisted one. Another consequence is the
unchanged structure of the QP dispersion with frustration,
which is also in accordance with the spectral weight redistri-
bution at low energies stated above. The unchanged structure
of the QP dispersion as well as the reduction of the band-
width and the QP weight are all consistent with the intuitive
picture of considering the effect of frustration on the hole
dynamics as a loss of QP coherence due to a reduced effec-
tive exchange Jef f.

B. Frustrated collinear case

As pointed out in Sec. II, the hole dynamics in the collin-
ear phase is quite different from that in the Néel phase. The
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FIG. 6. Quasiparticle weight of the spin polaron as a function of
frustration J2 /J1. On the right of the vertical line, a short range Néel
state has been assumed in the calculation.
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J2 /J1=0.3 and J1 / t=0.2 along the momentum line �� /2,� /2�
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arrangement of ferromagnetic chains perpendicular to the AF
chains leads to an effective Hamiltonian that involves the
coexistence of the magnon-assisted and free-like processes
for hole motion 	see Eq. �2�
. The presence of such processes
can be identified in the hole spectral functions. In Fig. 8, we
show the SCBA prediction for the collinear phase Q
= �� ,0� at J2 /J1=1 and J1 / t=0.4 along the momentum line
�� /2,��→ �� /2,0�. For this strong coupling regime, there
is again a strong k dependence of the spectra due to the
underlying magnetic collinear state. The low energy part is
related to the spin-polaron picture where the hole is mainly
coupled to the AF magnons, while at high energy there is a
resonance in the spectra that is related to the hole motion
along the ferromagnetic chains whose dispersion is of the
tight binding form. Although the QP excitation is originated
by the AF fluctuations, the string excitations practically dis-
appear owing to the fact that the only retraceable paths gen-

erating a linear potential are one dimensional in the collinear
state. On the other hand, the 2D AF character of the Néel
state increases noticeably the number of such retraceable
paths, making the string excitations observable. Besides the
reduction of the magnetic bandwidth, another effect of frus-
tration in the collinear state is to tune the interference be-
tween both processes for hole motion, resulting in a spectral
weight transfer from low to high energies. See, for instance,
in Fig. 9, the merging shoulders at ��3t of the last three
spectra, near k= �� /2,0�, for the more frustrated case
J2 /J1=0.6. Although not easily discernible, the spin-polaron
excitation is well defined. In particular, Fig. 10 shows the
monotonic reduction of the QP weight as the critical point
J2 /J1�0.51 is approached.18 We again confirm that the spec-
tra practically do not change when a short range collinear
order with gapped excitations is assumed in the calculation
near the critical point. Similar to the Néel case, the spin-
polaron picture is valid for the collinear regime, being the
QP weight always finite for the whole BZ. We again interpret
the reduction of zk as a consequence of the increasing con-
tribution of multimagnon terms in the spin-polaron wave
function of Eq. �3�. For increasing frustration—smaller
J2 /J1—there is a linear reduction of the QP dispersion band-
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width, which follows the magnetic one Wm=2J2+J1 �see the
inset of Fig. 11�, and a notable change of the structure of the
QP dispersion �see Fig. 11�. In particular, around J2 /J1�2,
the QP minimum moves from �� ,�� and �0,�� to �� /2,��,
leading to the divergence of the effective mass for some
momenta. This behavior is in contrast to that found in the
Néel state, where the only effect of frustration was a redis-
tribution of spectral weight at low energies. In the collinear
state, instead, the spectral weight transfer is between the low
and the high energy parts of the spectra which, at the micro-
scopic level, can be ascribed to the subtle interference be-
tween the magnon-assisted and free-like processes for hole
motion. It is by this mechanism, ultimately tuned by frustra-
tion, that the QP dispersion changes its structure. It is inter-
esting to note that the same behavior—namely, the change on
the structure of the QP dispersion along with the nonvanish-
ing of QP weight in the vicinity of the quantum critical
point—has been recently observed in the bilayer Heisenberg
antiferromagnet, where the interlayer coupling J� induces a
quantum disordered phase transition.21

C. Disordered phase

As pointed out in the Introduction, the nature of the dis-
ordered magnetic ground state in the intermediate regime
0.4�J2 /J1�0.6 is still under debate, although there is nu-
merical evidence of the presence of plaquette RVB
correlations.5 While in the ordered regimes the spin-wave
excitations are the proper magnetic degrees of freedom that
couple with the hole, the lack of a correct analytical descrip-
tion of the magnetic excitations above the disordered phase
does not allow one to envisage the proper effective Hamil-
tonian for the hole propagation. Then, the hole dynamics in
the disordered phase is not analytically tractable within our
scheme of calculation. Consequently, we resort to the Lanc-
zos method to study the hole spectral functions on finite-size

clusters. For these small systems, there is an important re-
duction of the disordered window relative to the thermody-
namic limit. In particular, for N=20, the weakening of the
Néel and the collinear correlations occurs in a narrow win-
dow around J2 /J1�0.58, with an enhancement of transla-
tional symmetry breaking correlations, such as columnar and
plaquettelike.22 In Fig. 12, we show the hole spectral func-
tions for N=20 sites, momentum k= �� ,��, and three values
of frustration ranging from the Néel �J2 /J1=0.57� to the col-
linear �J2 /J1=0.6� across the disordered regime �J2 /J1
=0.58�. We observe a noticeable spectral weight transfer
from high to low energies despite the very small change in
frustration, �J2=0.03J1. This behavior can be interpreted by
recalling the different mechanisms for hole motion in the
Néel and collinear regimes. The structure of the hole spectral
function for J2 /J1=0.57 �0.6� closely resembles that of the
magnetically ordered Néel �collinear� phase in the thermody-
namic limit. Surprisingly, in the disordered regime, the hole
spectral function �solid line in Fig. 12� seems to be the su-
perposition of the Néel and collinear cases. In particular, as
frustration increases, the position of the peaks remains unal-
tered while a spectral weight transfer takes place. Extra fea-
tures in the hole spectral functions, which could indicate the
coupling of the hole to translational symmetry breaking cor-
relations, are not observed in the disordered phase. We have
observed the same qualitative behavior of the hole spectral
functions for N=16, although due to finite-size effects the
intermediate windows are wider and slightly shifted to
higher values of J2 /J1.22 It is worth noticing, however, that
our results correspond to small cluster sizes, N=16 and 20;
therefore, they cannot be naively extrapolated to the thermo-
dynamic limit. Hence, the hole dynamics in the disordered
phase of the J1-J2 Heisenberg model, and the validity of the
spin-polaron picture, in particular, remains an open problem.

IV. CONCLUDING REMARKS

In this work, we have studied the dynamics of a hole
injected in the magnetic ground states of the frustrated J1-J2
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FIG. 11. Quasiparticle energy dispersion along the momentum
line �0,0�− �� ,��− �� ,0�− �0,0� for several values of frustration in
the collinear state. J2 /J1=2.5 �solid line�, J2 /J1=2 �dashed line�,
J2 /J1=0.9 �dotted line�, and J2 /J1=0.7 �dash-dotted line�. Inset:
bandwidth dispersion of the quasiparticle W �solid line� and mag-
netic Wm �dashed line� excitations as a function of frustration.
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Heisenberg model. To accomplish this task, we have used the
self-consistent Born approximation and exact diagonalization
on finite clusters. Our main result is that the spin-polaron
scenario remains valid whenever the ground state is magneti-
cally ordered, even in the vicinity of the Néel and collinear
quantum critical points. That is, there is always a well de-
fined quasiparticle excitation associated with a hole dressed
by magnons. Furthermore, the narrowing of the magnon dis-
persion, induced by frustration, leads to a loss of QP coher-
ence due to the proliferation of multimagnon processes that
build up the spin-polaron wave function.

At this point, it is interesting to discuss the physical sce-
nario behind the spin-polaron picture in the general context
of 2D antiferromagnets. The main idea is based on the domi-
nant pole approximation11 where the existence of a QP pole
crucially depends on the density of states of the low lying
energy excitations which can couple to the hole. For the
simpler Néel case, there are few low lying spin excitations,
and there is very little phase space available for the hole to
scatter, so the low energy states of the hole can have a long
lifetime. In this case the underlying microscopic process for
hole motion is the magnon-assisted one. For the collinear
state, the presence of ferromagnetic correlations induces
free-like hole hopping processes that interfere with the
magnon-assisted ones. However, the QP excitations are still
well defined even near the magnetic critical point. For non-
collinear cases, such as the triangular and canted antiferro-
magnets, we have recently shown that the effect of such
interference can be dramatic. In particular, for the triangular
AF with positive t, we have found12 a vanishing of the QP
excitation in an ample region of the Brillouin zone. For
canted Néel phases, we were able to investigate such inter-
ference by continually tuning the canting angle, finding a
critical value at which the QP excitations disappear.13 There-
fore, from the present and previous studies, we argue that the
collinearity of the Néel and the collinear phases are crucial
for the existence of QP excitations. This idea is also sup-
ported by results on the honeycomb23 and bilayer square
lattices.24 One interesting question is the breakdown of the
spin-polaron excitation and the possible realization of spin-

charge separation.25 It was suggested that this scenario could
take place in disordered magnetic states, although the lack of
reliable methods to compute hole spectral functions in the
thermodynamic limit makes this task quite difficult. Here,
the nature of the low lying magnetic excitations is crucial.
For gapped magnetic excitations, like in ladder26 and
checkerboard27 systems, a coherent QP motion of an injected
hole is expected, at least in part of the BZ. On the other
hand, for the kagomé lattice there is a quite small triplet gap
��0.05J and an exponentially large number of singlet ex-
citations within such a triplet gap.28 These unconventional
low lying excitations may prevent the appearance of spin-
polaron excitations, as recently observed in numerical
investigations.27 In the present work, we have numerically
obtained the hole spectral functions for the disordered phase
of the J1-J2 model, for N=16 and 20 sites. We have found
that these spectral functions resemble a superposition of the
Néel and collinear cases, suggesting the existence of quasi-
particle. Although our results cannot be naively extrapolated
to the thermodynamic limit, we believe that if the ground
state of the disordered regime is a plaquette RVB with triplet
gapped excitations, the spin-polaron picture could still be
valid.

From the experimental point of view, the quasi-2D vana-
dium oxide Li2VOSiO4 is considered a good realization of
the J1-J2 model, located at the collinear side of the diagram.9

Recent NMR experiments29 revealed a very low spin dynam-
ics, which has been interpreted as the coexistence of �� ,0�
and �0,�� magnetic domains of collinear phases in the re-
gime TN�T�J2+J1. Beyond the theoretical interest in the
validity of the spin-polaron picture, the interplay we have
established between the microscopic mechanisms and the
features of the spectral functions can help to interpret experi-
mental studies.30
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